

Planning Lasting Conservation

Joshua Royte - October 23, 2013

The Nature Conservancy's mission is to conserve the lands and waters on which all life depends.

Protecting nature. Preserving life.[™]

To solve critical challenges, The Nature Conservancy aims to improve the health of important natural systems that also enhance the lives of people around the world. The Nature Conservancy has helped protect >119M acres of land & >100 marine projects worldwide.

the largest network of private preserves located in 50 States & >30 countries

TNC has >3,500 employees & >400 are scientists.

River leading to Iliamna Lake, Alaska habitat the gravel bottoms provide habitat for king salmon ©Ami Vitale

What are the most promising ways to sustain & improve the Maine's ecological wealth in light of climate change, while enhancing the lives of people?

Planning Top Down and Bottom Up

Major Habitat Assessment (global)

Ecoregional Assessment (NE Region and Gulf)

Conservation Action Planning (Site specific)

To develop priorities and evaluate opportunity: Major Habitat Types→Ecoregions→Maine's ecological regions

Then on-the-ground conservation:

1)ensure protection,
2) restore & reduce threats,
3) manage consistently and
4)measure success (strategies, threats, systems)

forests

World Distribution of Temperate Broadleaf and Mixed Forests Major Habitat Type and the Human Footprint

Landscape and Global Context

As conservationists do we have some larger responsibilities?

Also - use latest imagery

Prioritize at regional scale

Conservation Planning Cycle

Define team, vision, scope targets, viability, objectives, and threats Document results, Defining **Your Project** share lessons, adapt plan Developing **Using Results to** Strategies & Adapt & Improve Measures Define theory of change, strategies & Implementing measures for Strategies & Measures activities and Develop work plan, targets measures plan, budget, and implement

Benetech

https://miradi.org

manage their project. Users can export Miradi project data to donor reports

or, in the future, to a central database to share their information with other

Planning Tools

practitioners.

>100 org's & agencies

>130 countries

What does it help with?

- Defining goals
- Describing & ranking threats
- Measures for strategies, targets, & threats
- Timelines & budgets
- Keeping track of the parts

- Protected Areas: >25,000 acres of unfragmented (or *in several nearby chunks*)
 Diversity of habitats, species, landscapes
 Streams & Lakes: streams and lakes fully connected
 >60 connected miles of large & small streams & ponds
 Surrounding Forest:
- Broad (1/4 mile?) connections to conservation Lands
- Buffered streams and forested watersheds

How Big should forest reserves be? (to maintain function over long time periods)

Boundaries are large enough to be Resilient + Resistant = Adaptive

Diversity of Underlying Building Materials:

- Elevational gradients
- Topographic diversity
- Geologic diversity

Connectivity of Terrestrial and Aquatic Ecosystems

- Local Connectedness
- Regional pinch points

Moisture, nutrients, impacts of weather & climate

More options for species & communities

Ridges Summits Side-slopes Toe-slopes Flats Cliffs Coves Valleys Wetlands N,S,E,W slopes

Ecological Landscape Model

- Elevation
- Landform
- Surficial & Bedrock Geology

More Connected = Healthier

Developed/Roads	Agriculture	Water	Fore	st
N			Structure	Degree of Development
North Atlantic Landscape Conservation Cooperative (USFWS)	Deciduous Forest	10	1
Latitu Cover US.: 30m USGS NLCD 2001 Land Cover Canada: 30m Land Cover derived from circa 1990's	150 200	Conifer Forest	10	1
Provincial Forest Stand Datasets by The Nature Conservancy		Mixed Forest	10	1
7	They show I	Deciduous Forest w/minor r	road 10	1
and a los		Conifer Forest w/ minor roa	.d 10	1
LAKE HURON		Mixed Forest w/minor road	10	1
2 x0	AN A	Open Water	8	1
		Shrub/Scrub	8	1
5	Carlos and the	Wetlands	8	1
		Open Water w/minor road	8	1
M A Y A		Shrub/Scrub w/minor road	8	1
		Wetlands w/road	8	1
		Barren Land	5	8
		Agriculture	5	8
A A A A A A A A A A A A A A A A A A A	Land Cover High Intensity Developed (plus commercial industrial transporta	ation) Barren Land w/minor road	5	8
	Low-Medium-Intensity Developed (open spaces, low-medium in Amiculture/Departations/Cultivated	Agriculture w/minor road	5	8
	Agriculture randomics contractor	Minor Roads	1	8
	Conifer forest	Low Density Developed	1	10
	Mixed forest and regenerating forest Shrub/Scrub/Grassland	High Density developed	1	10
Jun Same	Wetlands	Roads	1	10
The Nature Conse	ervancy OProduced by the Nature Conservancy Eastern Division Science, Boston	Low Density Developed	1	10
n NC	W:Regioninud projectsA_size\LCC_N4_LC_S_ILmud	w/minor road		
		High Density developed	1	10

w/minor road

DEGREE OF CONTRAST

Connectivity: Regional Pinch Points Based on circuit theory and

Based on circuit theory and McRae's circuitscape

Connections are critical for maintaining most species, from lynx and marten to ones that are common now.

Conservation priority areas in Downeast Maine

Great existing data

- Rare plant & animals
- Best example ecosystems
- Deer wintering areas
- Waterfowl/Wadingbird
- Brook Trout
- Salmon
- Alewives
- American eel
- Invasive fish
- Best condition

Stream Connectivity Habitat Viewer (org towns)

Recent aerials, GoogleEarth, TM Imagery, Lighthawk , stand maps, ground & water reconnaissance

BwH MNAP & IF&W

See Reverse for Legend

Connection for watery things:

Functional conservation needs to ensure links between terrestrial, riparian, freshwater, and marine habitats.

Healthy streams are connected and like healthy people are more resistant and resilient to harm

Culverts & Dams impact every aspect of healthy rivers

- Habitat fragmentation (connectivity)
- Warming (water quality)
- Dissolved oxygen (water quality)
- Inundation of river habitat (complexity)
- Sediment & structure starvation (complexity)
- Nutrients (water quality)
- Flow regime (water quantity)
- Invasive Species

And all more so with climate change

The Nature Conservancy & Northeast Association of Faih and Wildlife Agencies

Northeast Aquatic Connectivity

An Assessment of Dams on Northeastern Rivers

Most of the top 5% choices for restoration are in Maine Ottawn Columbus Anadromous Scenario Top 5% ٠ 2nd 5% 3115% 4th 5% 5th 5% 8th 5% 7th 5% 8h 5% 9th 5% 1085-59 71th 5% 12th 59 Outer Banks 13th 5% 14th 5% 15h 5% 1681 5% 17m 5% 300 18m 5% 19th 5% . 2001.5% Kilometers Charlotte

Connectivity analysis Ranking tools •Resident & searun fish •Habitat quality •Quality of watershed •Dams region-wide •Culverts w/USFWS

>11,500 crossings assessed

How problematic?

- >17% of timberland Xings
- >40% of public road crossings
- >90% of all culverts

Data helps:

- Prioritize action (us and others)
- Funding
- Focus additional work

Volunteers needed for more watersheds!

Barrier Assessment Tool (BAT)

Barrier Analysis Toolbar	
Scenario 🔻 Data Preparation	 Barrier Analysis - Point Analysis - Symbolize - 😰
	Create barrier output table
Connected Networks	 Calculate upstream functional network Count upstream barriers Calculate total length upstream Calculate downstream functional network Calculate distance from mouth Count downstream barriers
AT A A A A A A A A A A A A A A A A A A	 Calculate optional metrics Export functional networks Assign network ID to barrier Accumulate barrier attribute back to barrier Accumulate barrier attribute back to polyline

- Most & best in-stream habitat
- Best condition watersheds
- Fish present in networks
- Local infrastructure needs

Allocate resources to areas with best potential

3) Implement smaller restoration projects

Planning for Healthy Rivers

THE ACTIVE RIVER AREA

A Conservation Framework for Protecting Rivers and Streams

Look at places through the lens of natural river processes

• Ecological

April 2008

- Physical
 - Flow for
 - Sediment
 - Nutrients
 - Structure

Floodplains are highly productive Habitats

Fish without floodplain access

Fish with floodplain access

Wood contributions shape headwater and mid-reach stream habitat

Material Contribution Riparian Areas

Add 90m area along reaches not in base zone

Past

T STEUBEN DAM

Important places around rivers and lakes

- Floodplain areas
- Streamside
 - contribution areas
- Meander terraces
- Add aquifers
- Add calcareous

How to get things done? \rightarrow Collaborate!

Guess who can help with what

Clean Water and Safe Communities Act proposed \$50 million bond

to invest in natural and built infrastructure

that provides water-related benefits

for communities all around Maine.

Land protection & Infrastructure Upgrades

Maine Municipal Association

Protecting nature. Preserving life.™

SARGENT

Maine Congress of Lake Associations

Melting stream ©Kyle Ueckermann

CLEAN WATER & SAFE COMMUNITIES COALITION

Planning for long-term change is what we do anyway

Thank you

Joshua Royte jroyte@tnc.org

Angler on a section of the Penobscot River near Mount Katahdin. ©Bridget Besaw